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The adiabatic elimination of fast variables from overdamped stochastic processes by functional
integration is demonstrated. Adiabatic elimination entails the evaluation of a reduced evolution

operator from the full evolution equation.

For Fokker-Planck processes, the reduced evolution

operator may be expressed as a ground state expectation, and it is shown how this is represented
as a coherent state path integral. The elimination is then achieved by functionally integrating out

all reference to the fast variables.

The end result is a decoupling of the full evolution equation

into separate equations for the fast and slow variables. The method is demonstrated for Brownian
motion and for a system with multiplicative colored noise.

PACS number(s): 05.40.+j

L. INTRODUCTION

Stochastic systems may be described in terms of a set
of randomly fluctuating dynamical variables or degrees
of freedom. The fluctuations of these variables with time
may be completely independent of history (Markov) or
they may have some form of memory (non-Markov). Of
the two, Markov processes are considerably easier to han-
dle, but exact solutions are nevertheless rarely possible.
One useful simplification arises when a subset of the vari-
ables describing a stochastic process fluctuate on time
scales much shorter that those of the remaining vari-
ables. We call such variables “fast” and “slow,” respec-
tively. When this categorization in terms of fast and
slow variables is possible, we may in fact eliminate the
fast variables from the problem altogether, resulting in a
contracted evolution equation in terms of just the slow
variables alone [1]. In this reduced description, the influ-
ence of the fast variables on the slow ones is felt through
parameters appearing in the evolution equation for the
slow variables. Such elimination procedures have been
used in a number of applications, including laser theory
[2] and the study of self-organizing systems [3].

As a concrete example, consider Brownian motion in
a potential [4]. This is described by a Fokker-Planck
equation (the Kramers-Klein equation) in the particle’s
velocity and position variables. In the overdamped limit,
the friction coeflicient is high: the particle’s velocity is
rapidly relaxing and fluctuates on a time scale much
shorter than that of the variations in its position. In this
limit, the velocity fluctuations may be characterized ap-
proximately by a steady-state distribution function that
is independent of the fluctuations in the particle position
(the adiabatic approximation). Considering the projec-
tion of the joint distribution function onto a state where
the velocity distribution is always in equilibrium gives a
reduced Fokker-Planck equation in terms of just the po-
sition variable. The latter equation is often called the
Smoluchowski equation. A number of systematic meth-
ods for performing the reduction have been developed,
including projection techniques [5-7], cumulant expan-
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sions [8,9], and a Chapman-Enskog procedure [10]. These
techniques all yield the Smoluchowski equation plus cor-
rections in inverse powers of the friction coefficient. In
cases where the adiabatic approximation does not hold,
renormalization group ideas have been found to be use-
ful [11,12], but this added complication will not affect us
here.

The aforementioned methods for achieving the reduc-
tion in the adiabatic approximation do so by algebraic
manipulations on the full evolution equation. In this pa-
per, we show that the reduction process can also be ex-
pressed in terms of a path integral and solved by quadra-
ture. This path integral is not a standard phase space
integral over the position and velocity. Instead, the ve-
locity variable is regarded as independent. The “trajec-
tories” in velocity space are then represented with the
aid of coherent states, following which the velocity vari-
able is eliminated through a functional integration. Even
though the path integral representing the reduced evo-
lution operator may be Gaussian, an exact evaluation is
generally not possible owing to the noncommuting nature
of the coefficients that appear in the “action.” However,
even in this case an approximate evaluation is possible
and this in fact reproduces the known cumulant expan-
sion of the reduced evolution operator. Although the
analysis presented apparently does no more than use the
path integral as a stepping stone to obtain the reduced
evolution equation, an important technical advance is
achieved in the expression of the problem in a form al-
lowing considerable scope for further investigation and
development. The introduction of such functional ideas
has proved useful in a number of other areas of physics.

Of course, functional methods are not new in the study
of stochastic processes. The Onsager-Machlup [13] the-
ory represents Fokker-Planck processes in terms of path
integrals, though not in the same form as used here. This
theory has been utilized, for example, in the analysis of
escape problems [14]. Functional methods have also been
used by Fox [15] in discussions of non-Markov processes.
However, functional methods have not yet been applied
to the reduction problem as formulated above, despite
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the fact that the path integral is a natural form of ex-
pression for such problems. They describe very succinctly
the interaction of a subsystem with a heat bath [16], and
we will find it useful to speak in such terms too. An im-
portant step in the analysis is the introduction of boson
operators. These have been used in the reduction prob-
lem before by a number of authors [6,7,9]. Conventional
methods associated with boson operators and the path
integral method described here are equivalent, much in
the same way as operator and path integral quantiza-
tion methods in quantum mechanics are equivalent. The
present equivalence is manifest in the coherent state rep-
resentation of the path integral.

In Sec. IT we define overdamped processes for a general
stochastic system with only additive noise. In Sec. III we
show how the reduced evolution operator for such a sys-
tem is obtained by conventional operator methods. Eval-
uation of this operator in the adiabatic approximation
allows the original evolution equation to be decoupled
into equations for the fast and the slow variables. The
former are governed by a steady-state equation, the lat-
ter by a reduced Fokker-Planck equation. In Sec. IV we
demonstrate how the reduced evolution operator may be
written as a coherent state path integral and show that
the reduction is implemented via a functional integra-
tion. We also prove the equivalence of the path integral
method to the operator cumulant expansion, which has
been used previously in reduction problems. In Sec. V we
apply the theory to study Brownian motion. We further
study a model system with multiplicative colored noise
and show that this too can be handled by the path inte-
gral techniques. A formally exact evolution equation for
a colored noise system is thereby obtained. We conclude
in Sec. VI with a summary of the main achievements.

II. OVERDAMPED STOCHASTIC PROCESSES

In this section we discuss what we mean by an over-
damped stochastic process. The concept is clearest when
stated in terms of a Langevin equation. For Markov pro-
cesses, the Langevin equation has a simple structure and
is easily transformed into a Fokker-Planck equation in
which the inherent diffusive behavior is manifest. Some
straightforward manipulation leads to an expression, akin
to a vacuum-to-vacuum transition amplitude in quantum
theory, which in the high friction limit is amenable to an
ordered cumulant expansion and gives the reduced evo-
lution operator. The analysis is readily applied to over-
damped Brownian motion in a potential and results in
a series expansion for the reduced evolution operator in
powers of the inverse friction coefficient. We demonstrate
the general principles behind the elimination procedure
in Sec. III, following which we introduce the path in-
tegral representation in Sec. IV, and then finally study
some specific examples in Sec. V. We consider a quite
general model on which to base the analysis, with the
main constraint being that the noise is assumed to be
additive and white. In fact, more general Fokker-Planck
equations than the one obtained may be studied [17], but
we do not do so here. Later, in Sec. V we will find that
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multiplicative colored noise can also be handled by the
functional method developed.

Describing a Markov process in terms of the N dy-
namical variables {¢x}, £ = 1,2,..., N, we write the
Langevin equations for a system with free energy F as

; OF
¢ = Cr(¢) — Lk?ﬂ + &k, (2.1a)
(€e(t)ér (t')) = 2Librrr6(t — '), (2.1b)

where the overdot denotes a time derivative and the £ ()
are phenomenological Gaussian white noise processes un-
correlated with ¢, with zero mean and strength L.
Coupling between the dynamical variables is described
by Ck(¢), which satisfies conditions [12,18] such that the
equilibrium distribution of the ¢;’s is

Pea(9) = e F.

Explicit examples of the quantities ¢y, Cr(¢), Lx, and F
are given for Brownian motion in Sec. V.

Equation (2.1) may be used to describe the stochastic
evolution of many systems, including the aforementioned
example of a Brownian particle, the flow of an incom-
pressible Navier-Stokes liquid [18], and the critical dy-
namics of a Landau-Ginzburg system at a phase bound-
ary [11,12], among others. However, we are not interested
in all of these applications. We concentrate instead on
those particular systems in which the characteristic time
scales over which the ¢, relax can be separated into two
distinct, widely separated domains. Thus one particular
subset of the ¢, relax over times scales much shorter than
those of the remaining ¢;. This defines in a qualitative
manner what we mean by an overdamped stochastic sys-
tem. A more precise definition is given below. We will
see that the wider the separation of the two time scales,
the more accurate the reduced description of the system
dynamics that is obtained.

Assuming that the system described by Eq. (2.1) ad-
mits a separation of time scales, we separate the set of
dynamical variables {¢} into two subsets. One subset
contains those variables that are rapidly relaxing in the
sense to be defined. These we distinguish with indices
in a set B, that is, £k € B. The remainder we distin-
guish by indices in a set Z, that is, k € Z. Thus we
have {¢r} = {PreB}+ {Prez}. Then, expanding the free
energy in powers of ¢, we single out the quadratic term

sz+f

In some circumstances it may be more appropriate to
write |@x|? in place of ¢2. With the free energy expressed
in this form, Eq. (2.1) yields the Fokker-Planck equation
for the distribution function p(¢),

(2.2)

F(¢) = (2.3)

23(8) = (Lo + Lp(@), (242)
o
L A= (% + D (2.4b)
b= Mgy, o (4 Dugg ).
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L; = A (¢ + D )
;km& k * S
of
*Zaqs (L’” o

where we have written Ly = AyDj. The summations
over k € B and over k € T must obviously satisfy

D A(B) =D AlB)+ D A4)
k

keB kel
for an arbitrary differential operator A(¢).

By writing the Fokker-Planck equation in the form
above, we have isolated terms describing free Brownian
motion proportional to the parameters Ar. We now de-
fine an overdamped stochastic process as one in which

ck(¢>) . (2.40)

(2.5)

AkeB > Aker, (2.6)

i.e., as one in which the coefficients A; connected to the
“rapidly relaxing” variables have much larger magnitudes
than those of the remaining variables. The association
of 1/ with a time scale emerges by considering a free
energy with a dominant quadratic term and by neglecting
the coupling between the dynamical variables: the mean
of ¢y is then found to satisfy

(Bi()) = (Dr(0))e ™+,

which clearly exhibits A as a decay rate, larger \j im-
plying shorter characteristic decay times. Of course, the
relaxation behavior of the ¢, will not be of this form
for general processes. However, the inequality (2.6) im-
plies that for the systems of interest the total free en-
ergy is dominated by the quadratic term associated with
the ¢ren’s, i.e., F ~ 3, 5 ¢2% /2Dy, and that the noise
strengths L for k € B are much larger than those for
k € I. Both of these conditions are consistent with a
rapidly relaxing behavior for the fast variables. In Brow-
nian motion, Ay is the friction coefficient and the over-
damped limit corresponds to the limit of high friction.

(2.7)

III. REDUCED FOKKER-PLANCK EQUATION

We wish to reduce the Fokker-Planck equation above,
Eq. (2.4a), into a contracted form taking advantage of
the condition (2.6). Stated differently, we are looking
for a means of decoupling the evolution of the slow and
fast variables, which are presently coupled in the one full
equation. Two distinct strategies are conceivable, de-
pending on the time scales of the processes of most inter-
est. The first is to consider the influence of the slow vari-
ables on the fast and to obtain an evolution equation for
the latter. Such a strategy is most appropriate when con-
sidering processes occurring over very short time scales.
The instantaneous values of the slow variables then gov-
ern the evolution of the fast variables in a manner to be
found. This is akin to the “slaving” principle proposed
by Haken [3] in the context of self-organizing systems.
In this paper we do not consider processes on short time

M. RAHMAN 52

scales, but instead focus on the second strategy, which is
to consider the influence of the fast variables on the slow
in the adiabatic approximation. This is most appropriate
for processes occurring over very long time scales.

Now, because of condition (2.6) the fast variables may
be described by a quasiequilibrium distribution that may
depend on the instantaneous values of the slow variables
(see the preceding paragraph). We will assume that the
slow variables do not influence the dynamics of the fast
variables at all, i.e., that any coupling term can be ig-
nored in the evolution equation for the fast variables.
Over long time scales, the distribution function of the
fast variables is then described by the steady-state equa-
tion

preq(d)g) =0, (3.13)
so that
42
peq ¢B) H \/m ¢"/2Dk y (31b)

keB

where ¢ denotes the set of ¢ with k € B. This is the
adiabatic approximation in the form of most use to us.
In this approximation, Eq. (3.1) trivially constitutes one-
half of the solution to the desired decoupling of the full
Fokker-Planck equation. The actual problem is to find
the evolution equation for the slow variables.

The condition that the distribution function for the
fast variables is unaffected by the slow variables, whereas
the slow variables might be affected by the fast variables,
is exactly the condition satisfied by an ideal heat bath
[19]. In equilibrium statistical physics, a heat bath is used
to impose certain equilibrium properties on the subsys-
tem with which it is in contact. The heat bath is “large”
in some sense and is totally unaffected by its coupling to
the subsystem. Such an idea is consistent with the re-
quirement made at the end of Sec. II for the free energy
(recalling it is an additive quantity) to be dominated by
the prospective heat bath {¢res} in equilibrium. On the
other hand, the properties of the subsystem will respond
to the coupling with the heat bath. In a nonequilibrium
situation, this coupling results in dissipative forces caus-
ing the distribution function of the subsystem to relax to-
wards a steady state determined by the heat bath. Thus
the approximation we have used above to write Eq. (3.1)
is effectively to regard the fast variables as constituting a
heat bath in which the subsystem described by the slow
variables is immersed. This is a good approximation only
provided condition (2.6) holds.

With the distribution of the fast variables given by
Peq(®B), the total distribution function has the form

P(}) = peq(P8)o(¢1),

where ¢7 denotes the set of ¢ with £k € Z. Now the
eigenvalue problem for L, may be solved [7] to give
Lb’l/)n,k((ﬁk) = —nk¢nk(¢k), showing that Peq(¢5) o
Yo(és), with ¥o(ds) = 5 Yo,k. Thus o(¢z) is in fact
obtained by projecting p(qﬁ onto the n = 0 eigenstate,
or ground state, of L,. The adjoint eigenvalue problem

may also be solved, giving LZJJnk(@c) = —nk'zZn,k(qﬁk),

(3.2)
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with o(ds) = Ilies %o, Using the similarity transfor-
mation

p(¢) =e "'p(¢),  Li(t) =e L™t (3.3)
Eq. (2.4a) may be cast in the form
9
25(9) = Li(0)p(9), (3.4
which has the solution
p(#) = R(t)po(4), (3.5a)
t
R(t) = T exp (/ dt'L,'(t’)) , (3.5b)
0

with p(¢) = Po(¢) at t = 0 and T being the time-ordering

operator. From this, some algebraic manipulation [9]
shows that

0(¢I) = Rred(t)UO(¢I), (363.)

Reca(®) = [ [] dtuio(6m)ROV(dn),  (3.60)

keB

where o(¢z) = oo(¢z) at t = 0. Thus, just as the state
o(¢z) is the ground state projection of p(¢), Eq. (3.6b)
shows that the operator R;.q(t) is the ground state pro-
jection (expectation) of R(t), where we note that R(t)
expresses the time evolution of p(¢) in the “interaction”
representation defined by Eq. (3.3). In quantum mechan-
ical terms, Eq. (3.6b) is akin to a vacuum-to-vacuum am-
plitude.

The expression for R;eq(t) given in Eq. (3.6b) may be
simplified using an ordered cumulant expansion of the
expectation. This technique has been discussed in the
context of the reduction problem by a number of au-
thors [6,8,9]. Using such an ordered cumulant expansion,
R,cq(t) may be rewritten in the form

Riea(t) = T exp ( /0 t dt’Leg(t’)) . (3.7)

Now reversing the procedure used to obtain Eq. (3.5)
from Eq. (3.4), we recover the differential equation

;%a‘(qﬂ—_r) = Leg(t)o(¢z). (3.8)
This is the differential equation satisfied by o(¢z) if the
fast variables are in equilibrium to start off with at ¢ = 0.
If this is not the case, however, then we must further
ensure that this “solution” also satisfies the long time
scale condition discussed at the start of this section, since
we have not made any special arrangements to include
processes occurring on short time scales. In other words,
we must ensure that the differential operator governing
the evolution of o(¢7) describes only processes on a time
scale much longer than the characteristic decay times of
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the fast variables. Thus we must replace L.g(t) in Eq.
(3.8) by

Liea(t) = lim  Leg(t),

3.9
t>1/Aken ( )

thereby ignoring any apparent processes occurring over
very short time scales (transients). This solution is inde-
pendent of the distribution of the fast variables at time
t = 0, which may be taken to be in nonequilibrium if
desired: over time scales t > 1/Arcg, this distribution
will reach the steady-state form peq(¢s) and the above
analysis becomes valid. The aforementioned transients
may be avoided by switching on the heat bath coupling
adiabatically from the infinite past rather than suddenly
(and artificially) at ¢ = 0 as done above.

Equations (3.1), (3.8), and (3.9) represent a solution to
our original problem, namely, that of decoupling the orig-
inal Fokker-Planck equation Eq. (2.4a) by making use of
the separation of time scales condition Eq. (2.6). Equa-
tions (3.6)—(3.9) for the reduced system are analogous to
Eqgs. (3.4) and (3.5) for the full system. These reduced
equations are obtained essentially by a projection of the
original problem onto the ground state of L;, express-
ing the fact that we have regarded the fast variables as
constituting a heat bath. This decoupling was achieved
originally by Kramers [20] and others for the problem
of overdamped Brownian motion in a potential and has
since been discussed for a number of other systems involv-
ing slowly and rapidly fluctuating dynamical variables
(6,7,21]. Our review of the problem in Secs. I and II has
been expressed slightly differently than is usually done,
highlighting the interpretation of the reduction process
in terms of heat baths. Having set up the problem in
some detail, we show in the following sections that the
reduction process may be formulated very elegantly in
the framework of functional integration, which is a very
natural expression of the heat bath concept.

IV. REDUCTION IN THE COHERENT STATE
REPRESENTATION

Before proceeding to the path integral representation
of the reduction problem, we transform the full Fokker-
Planck equation (2.4a) into a more useful form. This en-
tails writing the Fokker-Planck equation as a Schrédinger
equation in imaginary time, with a “Hamiltonian” ex-
pressed in terms of creation and annihilation operators.
The evolution operator associated with this Schrodinger
equation may be written in path integral form in the co-
herent state representation, which is the most convenient
representation for subsequent manipulations. The reduc-
tion problem is then simply a matter of performing the
relevant functional integration. However, this functional
integral cannot generally be performed exactly and a per-
turbative evaluation may be necessary. This is demon-
strated by way of an example in Sec. VB. The main
result of this paper is contained in this section, that is,
the expression of the reduction (or decoupling) problem
in terms of a path integral. The reason why a coher-
ent state path integral is used as opposed to one of the
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more traditional variety becomes clear when applying the
method.
As the first step, we use

U = [J /4P (4.1)
keB
to perform the similarity transformation
P(¢) = Up(d), (4.2a)
H=H,+H; =-U(L, + Li)uhl (4.2b)

on Eq. (2.4a) to give the imaginary time Schrodinger
equation

9
-5 P(®) = HP(9). (43)

Likewise transforming the eigenstates of L, and Lz
gives Wy, k(dr) = Uthni(dr) = U P k(dr) for k €
B, which are eigenstates of the Hamiltonian H} since
Hy¥, k(dr) = k¥ i(dr). The ¥, (¢r) are in fact
harmonic oscillator states, as may be seen by writing the
eigenvalue equation explicitly in differential form. The %
that usually appears in the quantum mechanical version
of the eigenvalue equation is here incorporated into H,
and does not appear explicitly.
A little algebra shows that Hp may be written as

H, =Y \BlBx, (4.4)
keB
where
O 0
Bl = —+/Dj——, 4.5
k 2 fD‘_k kad)k ( a)
D o]
By = V/Di—— 4.5b
*TayDe TV o (455

are creation and annihilation operators for the states

lIl'n.,k(ﬁbk)a

(B, BL.] = Sk, (4.6a)
Bl];‘l’n,k(‘ﬁk) =vVn+ 1V, 1 k(dr), (4.6b)
BV (k) = VW1 k(dr) (4.6¢)

From Eq. (4.5) we may write ¢ and 8/8¢;, for k € B in
terms of By and BZ. Thus the interaction H; may also
be written in terms of By and BZ.

We now introduce coherent states [22—-24] into the pic-
ture. Coherent states are eigenstates by (¢) of the anni-
hilation operator

Bibi(r) = Bibr(dr),  Blbr(dr) = Bibr(or), (4.7)
where I;k(q&k) is the adjoint of bx(¢) and the eigenvalue
Bk is defined on the set of complex numbers. In terms of
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the ground state o x(¢%), we have

bi(pr) = ePBr Wk (dr).

The set of states by(¢r) is overcomplete in that there
is one state too many to form a linearly independent
set. However, the set possesses a resolution of identity,
albeit nonunique, and so may be used for the purposes
of constructing eigenfunction expansions.

The solution to Eq. (4.3) may be written formally

P(¢) = e H'Py(9),
where P(¢) = Po(¢) at t = 0. Using the identity

(4.8)

(4.9)

t
e~ (HotHt — o—Hotp oy (—/ dt'H,-(t')) (4.10)
0
with H;(t) = eHst H;e Hot | together with the fact that

T exp (— /Ot dt’Hi(t')) =UR@)UT (4.11)

leads to the important relation

/ H der¥o(ps)e ™ H Wo(5)

kEB

= [ TI dwn(én)R(tyb0(s). (412

keB

where Wo(¢8) = [[1cn Po,x(¢r). Representing ¥o(¢s) in
the abstract form |0) and recalling Eq. (3.6b), the above
may be rewritten much more transparently as

Ryea(t) = (0le™H|0). (4.13)

This simple result tells us directly that the reduced op-
erator Ryeq(t) is just the ground state projection of the
full evolution operator as defined in Eq. (4.9).

Of course, we could have reached the same conclusion
without recourse to the various transformations and ma-
nipulations above. However, the advantage of the repre-
sentation of Rreq(t) in Eq. (4.13) in terms of harmonic os-
cillator states and creation and annihilation operators is
that the expectation can be rewritten directly as a coher-
ent state path integral. The traditional form of the path
integral [25] follows by writing the transition amplitude of
e Ht in a basis of position eigenstates, e.g., (gz|e " 7t|q1).
This latter quantity may be expressed as a path integral
over all paths ¢(t) with fixed end points ¢; and ¢, i.e.,
with boundary conditions ¢(0) = ¢; and ¢(t) = g2. In
Eq. (4.13) we have written R,eq(t) as a transition am-
plitude not using position eigenstates but instead using
coherent states. The general form of such a transition
amplitude is (b"|e~H*|b') for coherent states |b') and |b")
which are products of the individual eigenstates of By,
k € B. This transition amplitude may be written as a
path integral on the space of complex functions B () sat-
isfying the constraints ;(0) = b}, and Bk(t) = b}. For
further details and applications of coherent state path
integrals, the reader is referred to textbooks [23,24].
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The actual transition amplitude in Eq. (4.13) involves
two ground, or vacuum, states. Thus it is a vacuum-to-
vacuum transition amplitude and may be written as a
path integral over complex functions satisfying the peri-
odic boundary conditions 8 (0) = Bk (t) = 0. Details of
how to do so are described in standard textbooks [23,24]
and we do not repeat the algebra here. The final result
may be written in the form

Fecalt) = 37 § D(8°)

X exp |:—/ dr (Z,B;afﬂk +H(ﬂ*,,3)>} :
o k
(4.14a)

where

foen=1] [ ™ peiDse

keB Y Pk (0)=0

(4.14b)

and 9, denotes a time derivative. The normalization is

N = @)

X exp {— [ar (Zﬂ;;afﬂk +Hb(ﬂ*,ﬂ)>} ,
0 k

(4.15)
which is analogous to Eq. (4.14a) except with H replaced

by H,. These Hamiltonians are given in the coherent
state representation simply by
Hy (8%, 8) = D> _ MBibBr, (4.16a)
k
H(B",B) = Hy(8",8) + Hi(B", B). (4.16b)

Specific examples are given in Sec. V.

Since we are in imaginary time, the path integral in
Eq. (4.14a) may be given a rigorous probabilistic defini-
tion [26]. This allows us to rewrite the path integral for
R.ed(t) in the alternative but equivalent notation as

Reca(t) = <exp (— / ar Hiw*,ﬂ)) > .

The probabilistic definition of the imaginary time path
integral allows the angular brackets () to be interpreted
in two equivalent ways. First, they may be interpreted
as a functional average that may be written as a func-
tional integral using the functional measure known as
the Ornstein-Uhlenbeck measure (a generalization of the
Weiner measure) [26]. This leads back directly to Eq.
(4.14a). Alternatively, they may be interpreted as an
operator average [24]

(oo - [ .9))
= <O‘Texp (— /Ot dt’ Hi(t’))’0>, (4.18)

(4.17)
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which is effectively the representation we started out with
to derive the path integral in the first place. This some-
what tautological argument underlines the equivalence
of the path integral representation to the standard rep-
resentation of Req(t), showing that they really are one
and the same fundamental object. Equation (4.17) is the
analogue of what in quantum theory is sometimes called
the Feynman-Kac formula.

The preceding discussion contains the essential result
of this paper, that is, that the reduced evolution operator
R,ed(t), using which the full Fokker-Planck equation may
be decoupled into separate equations for the fast and slow
variables, may be represented as a path integral. The “in-
tegrand” in this path integral contains the full dynamics
of the problem, as is evident from the presence of the to-
tal Hamiltonian H(8*,3). The reduced dynamics is then
obtained by integrating out the dynamics associated with
the fast variables, which we have done using boson co-
herent states bi(¢i) with k € B. The final answer for
Rrea(t) contains reference only to the slow variables. It
turns out that for all but the simplest cases, the path
integral cannot be evaluated exactly and we must resort
to approximate methods. Omne such method is the or-
dered cumulant expansion of the path integral. Due to
Eq. (4.18) this in fact leads to exactly the same results
mentioned in Sec. III. The fact that we are only rederiv-
ing known results using a seemingly more complicated
formalism is not a problem. The important point is that
the introduction of functional ideas lays the foundation
for further development and application of the reduction
method for overdamped stochastic processes.

V. APPLICATIONS
A. Free Brownian motion

The example of free Brownian motion is one instance
where an exact evaluation of the path integral is possible.
The Langevin equations are
Uk = —AkVk + &k,

f‘k = Vg, (51&)

(€r(t)&xr (') = 2A Dy 8(t — '), (5.1b)
where r and v are the position and velocity of the par-
ticle, with r,, (k = 1,...,N) being the components of r
and likewise for v, etc. Also, the Ay are phenomenologi-
cal friction coefficients along directions with index k& and
the Einstein relation gives D = kgT/m. Equation (5.1)
is equivalent to Eq. (2.1) with the identification

$=(f,), IT:(,\SD>, (5.2a)
¢ = (%) (5.2b)
F=>" {% + %ln(27rD)} . (5.2c)

k
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The form of the free energy F' follows from the equilib-
rium distribution for the v fluctuations Eq. (3.1b), which
for free Brownian motion is given by the Maxwell distri-
bution

Peq(V) = m exp (— va,f/2kBT> . (5.3)
k

The Fokker-Planck equation corresponding to Eq. (5.1)
is

d
5:P(r V) = (Ls + Li)p(x, v), (5.4a)
7] e}
Ly = ;Ak% <vk + D%;> , (5.4b)
d
L; = —;uk—ar—k. (5.4c)

This describes the unconstrained diffusion of a Brownian
particle in a 2N-dimensional phase space. We are inter-
ested in the overdamped limit, when A, becomes very
large.

Performing the similarity transformation described in
Sec. IV, we obtain an imaginary time Schrédinger equa-
tion with the Hamiltonian

8
H= ; MBIBy + zkj \/EbT—k(Bk +Bh. (5.5

The reduced evolution, operator is then

Realt) = 57 § D(B"0) exp (— i Z{ﬁ;nkﬂk
0 %

wotem)).

where Qi = 8, + M. To evaluate this, we use the follow-
ing result valid for ordinary bilinear (Gaussian) coherent
state path integrals:

1 t
~ }{D(ﬂ*ﬂ) exp (-/0 ;{ﬂiﬂkﬂk — Ji Bk — Jkﬁ;})

— exp (/tdtl /tdtg S T (t1) Su(tr - tz)Jk(t2)> ,
0 0 T

(5.7a)
where
Sk(ty — tg) = Le Mltr—t| (5.7b)

and the Ji(t) are arbitrary functions. Equation (5.7)
is effectively a “zero temperature” boson coherent state
path integral. Such path integrals may be evaluated by
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discretization, as shown, for example, by Negele and Or-
land [24].
Applying Eq. (5.7) to Eq. (5.6) we readily obtain

Ruea(t) = oo [ t i La(®)).

1
)=2_5,ba
k

and the time ordering is not necessary. Now using Eq.
(3.9) gives

(5.8a)

2
e“*kt)?—2 (5.8b)

Liea =), lDa—z (5.9)
red — /\k 87",% ] .
k
whence the reduced evolution equation is
cr(r Z ™ a 2 a(r) (5.10)

This equation is exact within the adiabatic approxima-
tion and is known as the Einstein equation. It is the
overdamped limit of the original Fokker-Planck equa-
tion (5.4). Stated differently, we have decoupled the dy-
namics of the position and velocity variables so that the
total probability distribution has the approximate form
p(r,v) = 0(r)peq(v). Note that because the quadratic
path integral for free Brownian motion can be evaluated
exactly, the above method is not the only method of
evaluation that works. The path integral may also be
described in terms of ordinary “trajectories” in velocity
space rather than with coherent states.

B. Brownian motion in potential

Brownian motion in a potential is more difficult to han-
dle than free Brownian motion because the path integral
cannot be integrated exactly despite being of Gaussian
form. This is due to the noncommuting nature of the
coefficients appearing in the “action” (i.e., the exponent
of the integrand). The Langevin equations this time are

. . 10U
P = Vg, Uk = —Apvp — — 2— + ks

B (5.11a)

(Ex()ér (1)) = 22k Dérrr8(t — t'), (5.11b)

where the potential U(r) has been introduced into the
velocity equation. This is equivalent to the model intro-
duced in Sec. II through the identification

C(¢) = ( —i‘(‘;r,,U) , (5.12a)
U(r mu2
F= + Z 2k3’} (5.12b)
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for Fy a constant and with ¢ and L as in Eq. (5.2a).
The free energy emerges from the Maxwell-Boltzmann
distribution. The Fokker-Planck equation is

7]
ap(r, v) = (L + L;)p(r,v), (5.13a)
o] 8
10U 0 1o}
L“‘%?(EEEE@"”*EI)' (5-13¢)

Comparing this to the Fokker-Planck equation for free
Brownian motion shows that the only difference lies in
the interaction term L;.

A similarity transformation now gives an imaginary
time Schrédinger equation with the Hamiltonian

H =Y MNBIBi+> (AcBx + AxBl),  (5.14a)
k k
— d 1 aU o
I, - vD2 Ap=— 22 —. (5.14b
* \/Bark, * " mv/D ore * @ark ( )

By contrast to Hamiltonians typically appearing in quan-
tum mechanical problems (e.g., in the polaron problem
[25]) the coefficients A and A do not commute in gen-
eral:

1 9%U

[Ak’ Ak'] = m OrOry .

(5.15)
This distinguishes the stochastic problem from ordinary
quantum mechanical problems and means that the corre-
sponding path integral cannot be evaluated exactly. We
write the reduced evolution operator in the form of a
functional average

R:ed(t) = <exp (_g Lt dt’ Z(Zkﬂk + AkIBZ)) > )

k
(5.16)

where we have introduced a parameter g for convenience,
which we will later set to unity. This path integral may
be evaluated approximately in an ordered cumulant ex-
pansion, which in fact leads to the same results obtained
by operator methods. As opposed to the path integral
for free Brownian motion, expressing the path integral
in terms of ordinary trajectories leads to difficulties in
evaluation due to the noncommuting nature of Ay and
Aj. This is the reason behind the expression of the path
integral in coherent state form.

To derive the ordered cumulant expansion for the path
integral, we write

Riea(t) = T exp ( /0 ' dt'Leﬂ”(t')> (5.17)
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and expand L.g(t) in powers of g,
Leg(t) = —gL1(t) — g°La(t) — g°La(t) — - -.

Further expanding the exponentials in Egs. (5.17) and
(5.16) and equating powers of g gives the van Kampen
rules for evaluating the terms in Eq. (5.18) [27,28]

Li(t1) = (1),

(5.18)

(5.19a)

Lmnz—Akmmm—m@» (5.19b)

La(ty) = /Otldtz /Otzdtg ((123) — (12)(3) — (1)(23)
—(13)(2) + (1)(2)(3) + (1)(3)(2)),  (5.19c¢)

and so on, where, e.g., (12) = (0|H;(t1)H;(t2)|0) are mo-
ments of the interaction

Hi (t) = eHthie_Hbt

= (AxBxe ' + AxBle ). (5.20)
k

Recalling the properties of the creation and annihilation
operators Eq. (4.6) the lower-ordered cumulants L(t),
Ly(t),..., may be evaluated straightforwardly. Evalua-
tion of higher-ordered cumulants is aided by diagram-
matic analysis, as shown, for example, by Steiger and
Fox [9].

The result of this evaluation up to order g2 is

N Ly @ (LOU 50
LEﬁ(t)_;)\k(l € )Brk mark+D8rk ’
(5.21)

whence the reduced Fokker-Planck equation is
e} 1 8 18U a
Z =S -2 (== +D— , (5.22
at° ) ; M Orn (mark + ark) o(v), (5:22)

also known as the Smoluchowski equation. As opposed
to the Einstein equation for free Brownian motion, the
Smoluchowski equation is not exact. However, it is a
good approximation for A; > 1 because the expansion
for L.g(t) emerges as an expansion in inverse powers of A
[10], though we have not proved this. Thus we have again
achieved a decoupling of the original Fokker-Planck equa-
tion, but this time with greater approximation than was
the case with free Brownian motion. As an added note,
the problem with the above cumulant expansion must be
mentioned. The difficulty relates to the fact that the ex-
pansion has been carried out in an arbitrary parameter
g, which has been inserted artificially, whereas the nat-
ural expansion parameter is 1/A;. This means that the
expansion above has an undefined rate of convergence.

C. Colored noise

As a final example of where the reduction procedure
may be implemented using path integrals, we consider
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a simple system with multiplicative, exponentially corre-
lated noise. The effect of colored noise has been found
to be important in a number of physical systems [29,30],
but we will do little more here than derive a formal evolu-
tion equation using the path integral method developed
above. We write the Langevin equations as

b1 = Wi(8) + gr(d) 7k, (5.23a)

(e (t)ner (2)) = Mie™ 117 16,
where W (¢) and gx(¢) may be nonlinear functions of the
&k, and 7 (t) represents the noise which we have assumed
to be exponentially correlated. Equation (5.23) may be
written as the Fokker-Planck equation

(5.23b)

gip(d’, n) = (La + Ly + Li)p(¢, ), (5.24a)
Lo=-) —B—Wk(¢) (5.24b)
¢ = Ok ’
) )
Ly = zk:’)’ka—nk (”Ik + Mk%) ) (5.24c)
i=- Z —gk (5.24d)

for the distribution p(¢#,7n). We desire to find the evo-
lution equation for the distribution function of just ¢.
As opposed to the Fokker-Planck equations for Brown-
ian motion, Eq. (5.23) contains an additional operator
Lq, which does not commute with L;, [L,, L;] # 0. This
causes complications in the straightforward application
of the path integral. However, some manipulation allows
us to recover the free Brownian motion path integral,
from which an exact reduction is possible.

Using U =[], e"i/4Mrk | we make a similarity transfor-
mation as before to obtain an imaginary time Schrédinger
equation with Hamiltonian

H=-L,+ Y wClCy
k

+ } : #)VMp(Cr +C}),  (5.25a)
with
F)
ct=_"T _ _ /M, 5.25b
<= s, Ve (5:250)
Cr = VM, 5.25
k= 2\/_— + 871 ( C)

The reduced evolution operator is given by Rieq(t) =
(0le~Ht|0), where |0) is now the ground state for the
operators Ck,C . Writing Ho = —Lo + Y, 'ka Ch, we
apply Eq. (4.10) to obtain
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Rieq(t) = elt <exp ( /0 dt’ Ek: Jie(t') (ex + ci)) > ,

(5.26a)

Jk (t) = e—L"t

Ezzgk(ti)) Myelat, (5.26b)

The functional average is equivalent to that for free
Brownian motion and may be evaluated exactly to give

t t
Rred(t) = eletT exp (/ dtl/ dts
0 0

X ij(tl)sk(tl —tz)Jk(t2)>, (5.27a)
k

Sk(ts —t2) = Le lttal) (5.27b)

whereupon taking the time derivative of Rieq(t),
t
Le(t) = Lo +2 3 Ji / drSi(t — T)Jk(r — 1), (5.28)
x 0

with Ji, = Ji(0).
Equation (5.28) may be integrated using the identity

Jk(t) — e—L:th — i (_nt')"(

n=0

LX)y, (5.29)

where L;(Jk = [La,Jk].
exact formal expression

The integration results in the

1 — e~ wtellt

- Tk (5.30)

Leg(t) = Lo+ Y _ Jx
k
This may be written in the alternative form

ei(t) = L, +ZZ—Jk(LX)" LJwP(n, z), (5.31a)

k n= 1
1 = 1
d —s
P(n,z) ( +1)!/0 ss
n—1 2"
=1-e*)" L (5.31b)
r=0

with z; = it and P(n, z) being the incomplete gamma
function. When ¢ > 1/, the above expressions simplify
to

gk(¢)(’)’k = o

8¢kgk(¢).

Lieg =L, + Z Mk

(5.32)

Reduced operators similar to this have been derived be-
fore for the colored noise problem but by different means
[31,32]. In particular Grigolini [31] shows that different
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approximations to Eq. (5.32) yield various results that
have appeared in the literature.

The main problem in the study of systems with colored
noise is to find a closed algebraic expression or approxi-
mation for the operators Leg(t) or Lyeq above. This type
of problem has attracted much attention in the literature
and a variety of methods have been applied [15,33-35],
but as stated before our objectives have been more mod-
est and we will limit our investigation to just a few special
cases. Now, the -, dependence of P(n,z) prevents Eq.
(5.31a) from being an explicit expansion of Leg(t) in in-
verse powers of ;. However, L..q can be rendered into
such a form, as is easily verified, and the lowest terms
of this give the lowest terms of the “r-expansion” result
36]:

red—L +Z'}’ a¢k )

~ o {gk(¢)+ 1 ( %_%W)}'
(5.33)

As further special examples, we note that for linear
friction Wi (¢) = —Ax¢i an explicit reduction is possible
for gx(¢) = 1 and for gi(¢) = ¢r. The latter case gx(P) =
¢ is trivial. We have

~ S Mggte = VMg, b
k

Now L, and Jj commute, so LXJ, = 0 and Eq. (5.30)
immediately yields

eff(t) L + Z Mk

(5.34)

—'"‘t)—a'ﬂﬁk

Obr "~ Oy

For t >> 1/~ the Stratonovich form of the Fokker-Planck
equation is recovered. The result for gi(¢) = 1 is ob-
tained most easily by use of Lie algebra methods [37].
Again L, is given as above. We want to find a closed
algebraic expression for

Jr(s) = e_L“"\/MkieL"”.
O¢r
We note that the operators L, and J; are elements of a
closed Lie algebra. Then since Ji(s) satisfies the differ-
ential (Lie) equation

¢r. (5.35)

(5.36)

d
75 7 (8) = [J(s), La], (5.37)
s
use of the trial solution
o

with the initial condition Ji(0) = Ji, where ax(s) and
br(s) are to be determined, readily gives

9
Odr
Inserting this into Eq. (5.28) and performing the 7 inte-
gration yields

Ji(s) = e** /My (5.39)
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92
Leg(t) = Z Ak +% ( e—mm)t) 547 (5.40)
Allowing for differences in notation, Egs. (5.35) and

(5.40) are trivial generalizations of known results [15].

VI. SUMMARY

In this paper we have studied the reduction of Fokker-
Planck processes in which the correlation times of the
dynamical variables can be separated into two distinct
domains. This separation of time scales permits a decou-
pling of the full Fokker-Planck equation into two evolu-
tion equations for the fast and the slow variables. On
long time scales, the distribution of the fast variables is
determined essentially by a steady-state equation inde-
pendent of the slow variables. The evolution of the slow
variables is then determined by a projection of the orig-
inal problem onto an equivalent problem in which the
fast variables are maintained in that steady-state distri-
bution. The fast variables thus act as an effective heat-
bath, imposing their influence on the subsystem of slow
variables without in turn being affected by them. On
the other hand, the nonequilibrium distribution of the
slow variables relaxes towards a state determined by the
coupling of the slow variables to the fast.

A number of methods for achieving the decoupling are
known. Our main result is that the projection process
used to obtain the dynamics of the reduced problem is
equivalent to performing a functional integration over the
fast variables. In particular we have shown that this pro-
cedure is very conveniently formulated in the coherent
state representation of the path integral. The reduced
evolution operator is then found by performing the rele-
vant functional integral. An exact evaluation of the path
integral is only possible for a few processes. The cases of
free Brownian motion and a system with exponentially
correlated colored noise were studied as specific examples
where this is possible. For Brownian motion in a poten-
tial and indeed for general stochastic processes, an exact
evalution is not possible. In this case it was shown that
the path integral may be expanded in an ordered cu-
mulant expansion, permitting an approximation to the
reduced evolution operator that is good provided the re-
laxation times of the fast variables are sufficiently rapid.

In the applications studied, no specific computational
gains were apparent through the introduction of the path
integral representation. The analysis could equally well
have been performed in operator form (see Sec. III) and
identical results for the reduced evolution operator would
have been obtained. In this sense we are in a situation
like that of quantum mechanics, where canonical quan-
tization and path integral quantization are known to be
equivalent appoaches to the same problem. However, in
quantum mechanics it is known that path integral meth-
ods admit manipulations of the theory that may be more
cumbersome using only operator methods. These include
series rearrangements and asymptotic expansions, among
others [38]. Possible applications of such techniques to
the reduction problem have not been investigated here.
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Thus the gain achieved has been for the present a purely
technical one. Functional integration is a very elegant
form of expression for reduction (heat bath) problems
and we have shown exactly how overdamped stochastic
processes may be described in this approach.
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